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2AbstractThis paper presents and evaluates the numerical solution of a coupledsystem of equations that arises in a model for the formation and evolutionof three-dimensional longshore sand ridges. The model is based on the in-teraction between sur�cial or internal weakly nonlinear shallow-water waves,having weak spanwise spatial dependence, and the deformable bottom to-pography.The presentation of the details concerning the discretization of the modelis primarily motivated by two facts: (1) The model involves equations forwhich little is known regarding its solutions, and (2) the predictor-correctorscheme presented here, which combines �nite di�erence techniques and �xed-point methods, is simple, fast, and general enough to be used in the dis-cretization of partial di�erential equations with local nonlinearities whosesolutions are smooth.



31 IntroductionThe following system of equations constitute a model for the formation and evolu-tion of three-dimensional sand ridges on the continental shelf:a1x � iK1a1yy + iK3f(x; y)a1 + iK5e�i�xa?1a2 = 0a2x � iK2a2yy + iK4f(x; y)a2 + iK6e+i�xa21 = 0a1(x = 0; y) = A1(y)a2(x = 0; y) = A2(y); (1)and @@T h(x; y; T ) = K�0 [�x(a1; a2) + �y(a1; a2)]h(x; y; 0) = H(x; y); (2)with appropriate boundary conditions on y = 0 and y = N . The real constantcoe�cients K are O(�; "), where � characterizes the degree of nonlinearity of thewaves and " the size of the slopes of the bottom topography. The constants aregiven in the appendix. Equation (1) describes the spatial structure of the complexamplitudes of the two most energetic modes of weakly nonlinear dispersive oceanwaves traveling in the shoreward direction x over a deformable bottom topographyh = 1+ "f(x; y). The variable y is the spanwise coordinate. The bottom evolutionobeys the mass transport relation, Eq. (2). A full description of the model appearsin [1] and [2].Owing to the widely discrepant time scales between the (fast) evolution of thewater waves and the (slow) bottom topography, this coupled system may be solvediteratively: Given an initial bottom con�guration H(x; y), we seek a solution to the



4water waves using Eq. (1). The bottom is then updated using the mass transportequation, and the whole procedure is repeated with the new bottom until someprescribed time.The similarity of Eq. (1) to the nonlinear Schrodinger equation (NLSE) leadsus to conjecture that the numerical technique presented here applies to the NLSEin a straightforward manner. In fact, any equation or system with solutions ofsu�cient regularity with local nonlinearity may be solved by our method.Several issues have motivated the particular choice of the scheme to be pre-sented: (1) an e�cient, simple, and su�ciently accurate method is desired toimplement the above nonsti�, nonlinear system numerically; (2) the accuracy re-quirements are not very sophisticated since the main objective is the explorationof phenomenological questions; (3) a uniform grid is preferred over a variable one,so that both the surface and mass transport equations may be easily computedon the same grid; and (4) the computational domain is fairly large for the sort ofproblem presented in this study. We refer to the numerical scheme adopted in thisstudy as the �xed-point method (FPM). Among its best features are low storagerequirements and high speed.The input to the model is composed of an initial bottom con�guration and themode amplitudes at the line x = 0. The required dynamical parameters are thefundamental frequency, which is needed to determine the K constants; an estimateof the size of � � 1 and � � 1, respectively giving the degree of nonlinearityand dispersiveness in the waves; and the dimensions of the rectangular patch,0 � x �M , 0 � y � N , of ocean on which the solution is to be computed.



5The following di�erence operators pertain to the discretization:�q = u(qj+1)� u(qj) forward di�erencerq = u(qj)� u(qj�1) backward di�erence�q = u(qj+1=2)� u(qj�1=2) central di�erenceAq = u(qj+1) + u(qj) forward average (3)in the independent variable q, say. The physical space is given by R2 � T �[0 � x � M; 0 � y � N ] � fT � 0g. De�ne R2� � T� � (xr; ys) � Tn =(r�x; s�y)� n�T 2 R2� T . Furthermore, there are integers m and n, such thatM = m�x, N = n�y.2 Discretization of the Mass Transport Equa-tionThe mass transport equation is implemented numerically by using a two-step Lax-Wendro� scheme, which is second-order accurate in time and space. Since thistechnique is very well established [3], we shall not report on such standard issuesas consistency, convergence, and uniqueness.Equation (2) is approximated by the following computational module:hn+1=2r+1=2 = 14(Ax +Ay)h+ �T2�x�x�+ �T2�y�y�hn+1j = hnj + �T�x �xT�+ �T�y �yT� (4)



6on R2� � T�.For the sake of clarity, the stability criterion is established in the shorewarddirection only. Since �x = �hhx, substituting in Eq. (4) yieldshn+1j = hnj � �x[12(�x +rx)h� 12�x(�x �rx)h]; (5)where �x = ��h�T=2�x. A local stability criterion may be established by replac-ing h = �n exp(ir�x) in Eq. (5), from which it follows that the growth factor issuch that j� j2 = 1 � �x(1� �2x)(1 � cos(r�x))2; (6)and formal linearized stability shall result if j� j � 1, which restricts �2x � 1.Using the same argument, we can �nd the stability criterion in the spanwisedirection, so that the stability of Eq. (4) in two space dimensions requires that� = �(�hhx�T=2�x; �hhy�T=2�y) be less than one in component form. Since�h = � 2Xj=1 4�2k3j�j!j (1 � �2h2k2j =2)Hj jaj j2�h = � 2Xj=1 4�2kjh�j!j (1 � �2h2k2j =2)Jj [IjRjy � IjyRj]; (7)where Ij and Rj are, respectively, the real and imaginary parts of aj, it is possibleto show that the maximum value attained by either j�h j2, or j�h j2, is of the orderof 16�3jaj j4. Hence, for stability the grid size is determined by the constraint�T�x � 14�3=2jaj j2; (8)



7a result that sits well with the need to be economical about computer resourcesand that does not con
ict with the stability criterion of the overall iterative schemeof the full model. Thus, in component form, for �x � 1, and assuming jaj j � 1over the whole domain, we obtain �T�x � ��3�; (9)and for �y � 1, the same argument leads to�T�y � ��3: (10)Dissipation is known to occur except when �2x = 1. The e�ect, however, can bequite small|fourth order in �x{ if the wavelengths are restricted to being muchgreater than the grid size.3 Solution of the Surface Equations3.1 Numerical Solution of the Two-Dimensional SystemThe two-dimensional case is considered here because its numerical solution willbe used subsequently to evaluate the performance of the three-dimensional case.The two-dimensional case has been considered in detail by Bona et al. [4]. Weadopt the same computational scheme and rely on their con�dence in the methodto enable us to use its results for comparison in the three-dimensional case. The



8numerical solution of the two-dimensional wave systema1x = �iK3f(x)a1 � iK5e�i�xa?1a2a2x = �iK4f(x)a2 � iK6e+i�xa21a1(x = 0) = A1a2(x = 0) = A2; (11)where A1 and A2 are constants, will be used later in the evaluation of the imple-mentation of the three-dimensional surface system. To solve the system, we use astandard fourth-order explicit Runge-Kutta scheme�r+1 = �r + 16(P1 + 2P2 + 2P3 +P4)P1 = �xF(�r; xr)P2 = �xF(�r + 12P1; xr + 12�x)P3 = �xF(�r + 12P2; xr + 12�x)P4 = �xF(�r +P3; xr +�x); (12)where F is the right-hand side of Eq. (11), and the vector �r � [a1(xr); a2(xr)].The details on the applicability of such a scheme to the solution of Eq. (11) appearin [4].



93.2 Numerical Solution of the Three-Dimensional CaseFor the surface equations in the three-dimensional case, Eq. (1) is rewritten asa1x � iK1a1yy + iK3f(x; y)a1 = �iK5e�i�xa?1a2a2x � iK2a2yy + iK4f(x; y)a2 = �iK6e+i�xa21a1(x = 0; y) = A1(y)a2(x = 0; y) = A2(y)a1y(x; y = 0) = 0a1y(x; y = 0) = 0a2y(x; y =M) = 0a2y(x; y =M) = 0 (13)
to separate the linear and nonlinear parts. The �rst two boundary conditions areinherent in the physics of the problem. The remaining boundary conditions arearti�cial. These Neumann boundary conditions, combined with a computationalprocedure that will be explained presently, ensures that the overall structure of thesolutions remains negligibly a�ected by the choice of lateral boundary conditions.We call this technique the \zero-
ux procedure."To justify the need for such procedure, we spell out what sort of problem weare faced with: Since we need to compute a solution over a �nite but large domain,care must be exercised in imposing boundary conditions on the lateral sides so asto avoid the introduction of structure in the solution that is strictly mathematicalrather than physical in nature. A possible way to compute a solution of the prob-lem over an e�ectively unbounded domain over a �nite grid is to impose periodic



10boundary conditions. However, periodicity imposes unwanted symmetries on thestructure of the computed solutions. To avoid this situation, we use appropriateboundary conditions along the lateral sides and, in addition, place restrictions onthe initial bottom con�guration and the boundary condition at x = 0 so that wecan compute an oceanic event on a swath of what amounts to be an e�ectively un-bounded domain. We have found that this zero 
ux procedure is superior to othersynthetic boundary conditions in minimizing unwanted structure in the solutions.The Neumann boundary conditions make the problem well-posed; however,by themselves, they would introduce a great deal of structure. Physically theseboundary conditions correspond to placing hard barriers on the lateral sides of thedomain. A posteriori we know that the solution to the model is two dimensional ifneither the bottom nor the boundary condition at x = 0 has y dependence. In sucha case the zero 
ux condition on the lateral sides has no e�ect on the solution overany part of the domain (i.e., it does not lead to y-dependent solutions). We cal-culate the system over a computational domain that we divide into three regions.The large central region, 
anked by two su�ciently wide lateral strips, is one inwhich y variation in the initial bottom or in the boundary condition at x = 0 ispossible. In the lateral strips no y dependence in the above-mentioned quantitiesis permitted. The solution in these lateral strips is discarded. The initial bottomand the boundary condition at x = 0 are connected smoothly in all three regionsso that a minimal amount of structure is introduced in the solutions. The size ofthe lateral strips is determined by what amounts to an educated guess.De�ne the following vectors, with the superscript T meaning transpose, with



11all K 0s real: k = i[K1;K2]Tkf = if(x; y)[K3;K4]T� = [a1(x; y); a2(x; y)]T 2 C2 (14)with (x; y) 2 R2�, so that the system, Eq. (13), is now recast on the discrete gridR2� as [@x � k@yy + kf ]� = b(x; y; �); (15)with the linear part on the left-hand side and the nonlinear terms on the right ofthe equals sign, plus boundary conditions,�y = 0 on y=0, y=N;� = �0 on x=0,: (16)The term b(x; �) represents the nonlinear terms. Succinctly, the above equationmay be written as L� = b; (17)where L is the linear operator. Let L be a suitable discretization of the linearoperator. Suppose the value of the vector � at level r for all s is known. Makinguse of �xed-point methods, we can �nd the value of the vector at level r + 1.Computationally, the calculation is performed in two steps: let l be the index of



12the iteration, and let � be an intermediate result. Then the following computationalscheme is proposed: L� = b(x; y; �l)L�l+1 = b(x; y; �): (18)Formally, Eq. (18) is equivalent toL�l+1 = ~b(x; y; �l): (19)To start the iteration, we use the value of the �eld variables at the rth level in x(i.e., �0 = �r). The condition for convergence of Eq. (18) is found by appealing tothe �xed-point theorem.For the purpose of determining the convergence criterion, de�ne C, a region inC4, the generalization of the four-dimensional real space to complex variables. Let� and h 2 C be two vectors in that space. Hence, the derivative of A with respectto � is de�ned as A� � J(�) = @Ai@�j : (20)If the second derivative is continuous for all � 2 C, then it satis�esk A��(�;h;h) k� R k h k2 (21)for all �.



13Furthermore, let k � kp, with p = 1; 2;1, represent the induced normsl1 = max1�j�nfPni=1 jAij jg l2 = fPni=1Pnj=1AijA?ijg1=2l1 = max1�i�nfPnj=1 jAij jg: (22)Finally, de�ne a supersystem on R2� as[@x �K@yy +Kf ]� = B(x; y;�) (23)plus boundary conditions, �y = 0 on y=0, y=N� = �0 on x=0 (24)composed of (13) and its complex conjugate, withK = [k;k?]T 2 CKf (x; y) = [kf ;kf?]T 2 C� = [a1(x; y); a2(x; y); a?1(x; y); a?2(x; y)]T 2 C: (25)Let L be the resulting discrete operator of the supersystem, composed of L andits complex conjugate. Choosing a nonsingular representation for L (hence L willbe nonsingular as well), and multiplying both sides of (23) by L�1, we have�l+1 = A(x; y;�l): (26)



14De�ne the iteration discrepancy ask ��l+1 kp�k �l+1 ��l kp : (27)Appealing to the �xed-point theorem, we can surmise thatk ��l+1 kp = k A(�l)�A(�l�1) kp� k J(�l�1)��l kp�k J(�l�1) kpk ��l kp� k J(�l�1) kpk J(�l�2) kpk ��l kp� � � �� k�1Yl=0 k J(�l) kpk ��0 kp; (28)provided 0 <k J(�l) kp< 1: (29)Equation (29) is in fact the convergence criterion for the iteration process.To establish an estimate of the rate of convergence, let r > 0 be given such thatthe set of vectors S = f� :k �� s kp< rg contains a �xed point s of A(s), that is,s = liml!1�l = liml!1A(�l) = A(s): (30)Further, let S � C, J(s) continuous on S and k J(s) kp< 1. Then there exists an" > 0 such that the �xed point iteration is convergent whenever k �0 � s kp< ".De�ne k el+1 kp, the measure of di�erence between the (l + 1)th iterate and the



15root. Hencek el+1 kp=k �l+1 � s k�k J(s)el +A00(�; el; el) kp�k J(s)el k +R k el k2 : (31)Quadratic convergence is possible if J(s) = 0,liml!1 k el+1 kpk el kp � R: (32)For the problem in question, however, the best rate of convergence will be linearsince J(s) 6= 0: liml!1 k el+1 kpk el kp �k J(s) kp : (33)A measure of resources required in the computation is the size of the resultingmatrix problem. The slightly better 
exibility in the choice of discretization forthe linear operator L is the key advantage of this method over others. The mosteconomical discretizations are those that lead to a tridiagonal or quintadiagonalmatrix. The choiceL = ( 32�x�x � 12�xrx)�sr � ( k�y2 �2y + kf sr+1)�sr+1 (34)leads to an n � n tri-diagonal matrix. This choice of discretization is commonlyknown as the Douglas scheme. L has eigenvalues�s = �(3 + 2�+ 2�xkf ) + 2� cos[ s�n+1 ] s = 1; � � � n ; (35)



16and the eigenfunctions are given byfsin s�n+ 1 ; sin 2s�n + 1 ; � � � ; sin s�n+ 1gT s = 1; � � � ; n. (36)Furthermore, the operator L is diagonally dominant, sincen+1Xj 6=i jLij j � jLii j i = 1; � � �n; (37)the Lij 's being the entries of the matrix L, and nonsingular sincejLii j > jLii+1 j > 0 i = 1; � � � n� 1jLii j � jLii+1 j+ jLii�1 j Lii+1Lii�1 6= 0 i = 2; � � � n� 1jLii j > jLii�1 j i = 2; � � � n: (38)If � = �rei�, where � = ��ys, and � = 2 �x�y2k, upon substituting these quantitiesin L the magni�cation factor is� = 12�(1 � cos �) + 2�xkf + 3f2 �q1 � 2�(1 � cos �)� 2�xkfg; (39)from which it is clear that j� j � 1. Thus the linear operator is unconditionallystable.An estimate of the accuracy of the discretization of the linear operator, as wellas a check on its consistency with the continuous operator on the grid, is given by(L� L)� = �x22 �xx + k�y212 �yyyy + � � � ; (40)



17where L is the continuous linear operator. Equation (40) implies that the schemeis O(�x2 +�y2) accurate.This order of accuracy is an upper bound on the accuracy of the overall scheme;hence, attempting to reduce the error k el k much below this is pointless. Sincethe root is not known a priori, the iteration procedure is carried out until the dis-crepancy is safely below the above-quoted error, but not much beyond that. This,in e�ect, is the criterion used in the code for stopping the root-�nding iterationprocedure.Consistency of the discretization is readily established by comparing the con-tinuous problem with its discretization in the limit as the grid size gets smaller.It can be shown that the discretization approaches the continuous operator on thegrid uniformly.Since the Douglas scheme is inapplicable at r = 0, a standard backwards Eulerscheme, 1�x�x�r � 1�y2k�2�r+1 +Ax(kf�)r+1; (41)is used to discretize L for the �rst step in x, which can be shown to be uncondi-tionally stable as well.Having made a choice on the particular form of the operator L, the conditionthat k J(x) kp< 1 for the surface system must be determined explicitly, so thatconvergence is established for the sand ridge problem. To estimate the size of J(x)we use the supersystem, Eq. (26), to �nd that��l+1 � J(�l)��l (42)



18��l � J(�l�1)��l�1 (43)etc. (44)with J = L�1B0(�); (45)whereB0(�l) = 0BBBBBBBBBBB@ 0 �iK5e�i�xr+1a?l1 �iK5e�i�xr+1al2 0�i2K6e�i�xr+1al1 0 0 0iK5e+i�xr+1al?2 0 0 iK5e+i�xr+1al10 0 i2K6e+i�xr+1al?1 0 1CCCCCCCCCCCA ;(46)for the lth iterate. In Eq. (46), it is understood that the a0s are de�ned only onthe grid.From Eq. (45), k J kp< 1 if the size of L is greater than the size of B0. In thel2 norm, the convergence condition isk J k2=k L�1B0 k2�k L�1 k2k B0 k2� 1: (47)Since LLy = LyL, where Ly is the Hermitian matrix of L, then the spectralradius gives a measure of the two norm. Using this information, we have thatk L�1 k2� mins=1;nj�s j; (48)



19or, using Eq. (35),+q(K25 + 4K26 )ja1 j2 +K25 ja2 j2=(3 + 2�xkf ) < 1; (49)where the l1 in y is used to estimate the size of the vectors, that is, ai =max1�s�n asi , i=1,2. Hence, Eq. (49) gives strict constraints on �, �x, and ai,to be satis�ed in order to guarantee convergence in the solution. Another con-straint imposed in the numerical implementation was to restrict �x to be lessthan 2�=�, so as to minimize the phase error. In Figures 14 and 15 the parametricplots of K5 and K6 are shown; they complete the picture of the relevant size of allthe quantities involved in Eq. (49).4 Performance Evaluation of the Numerical Schemes4.1 Evaluation of the Mass Transport Equation SchemeWe ran a few test cases in order to con�rm qualitatively the stability, consistencyand accuracy of the Lax-Wendro� scheme, checking for agreement with the well-established theoretical results. Of more concern to us was the issue of dampingand of phase drift. To quantify the scheme's dissipation and drift, we used a modelproblem for which an exact solution is known.The model problem washT + khhx = 0; x 2 R1; T > 0; (50)



20with initial condition h(x; 0) = 8>>>>>><>>>>>>: 1 x < 01 + "x 0 � x � l1 + "l x > l (51)in which 0 < k < 1, and " < 1. The exact solution of Equations (50) and (51) ish(x; T ) = 8>>>>>><>>>>>>: 1 x < kT1 + " x�kT1+"kT kT � x � l + k(1 + "l)T1 + "l otherwise. (52)Di�erent values of k were tried|it scales the time step|but we report our resultsfor k = 0:1. For such a case, convergence is possible if h�T=�x < 10 in thetime interval 0 to T . Since Eq. (50) conserves a quantity proportional to hp,we compared the computed value h� with the theoretical value h as a function ofa � k�T=�x and as a function of time T , to get an idea of the scheme's dissipation.Speci�cally, we monitored the constant of motionc(T; a) = M=�xXr=0 h2�(T; r�x)r�x+ 23kT [h3�(T;M)� h3�(T; 0)]; (53)where M is a very large value in xr. For an estimation of the phase drift, wecomputed e2(a; T ) =Xr jh�(T; xr) � h(T; xr) j2=Xr jh(T; xr) j2: (54)



21Figures 1 and 2 show parametric plots of c and e2, respectively.
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Figure 1: Dissipation as a function of a and T with k = 0:1 for the Lax-Wendro�scheme. From top to bottom, a = 0:4, 0:2, 0:1, 0:05, respectively.4.2 Performance of the Runge-Kutta SchemeThe accuracy and dissipation of the explicit fourth-order Runge-Kutta was inves-tigated using a 
at bottom and Aj constants. The domain was 128 units in extent,or roughly 10 interaction lengths. In this special case it may be shown that theenergy is given by the sum of the mode amplitudes squared. This quantity wasconserved by all trials to within 2% for all reasonable grid sizes.An exact solution to Eq. (11) is known when f(x) = 0. To estimate the
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Figure 2: Phase drift for the Lax-Wendro� scheme as a function of a and T withk = 0:1. From top to bottom, a = 0:4, 0:2, 0:1, 0:05, respectively.accuracy and error of the scheme, we compared the outcome of the numericalsolution with the exact solution of this special case [5], which, in terms of Jacobielliptic functions \sn," arev2(~x) = v2a + (v2b � v2a)sn2[(v2c � v2a)1=2(~x+ ~x0); 
]w2(~x) = 1 � v2(~x): (55)The quantity ~x0 is determined by the boundary condition y2(0), and the value of
 is related to the three roots va, vb, and vc. The following measures were used to



23estimate the accuracy and error:l1 = maxfPr j�(r�x)� �0(xr) jgmaxfPr j�0(r�x) jgl1 = Pr j�(r�x)� �0(xr) jPr j�0(r�x) jl2 = [Pr j�(r�x)� �0(xr) jg2]1=2[Pr j�0(r�x) j2]1=2 ; (56)where � is the calculated value of ai, and �0 the exact value at the grid location.The exact solution �0, was computed using the algorithm given in [6], p. 189. Theerror as a function of grid size is plotted in Figure 3, from which one can concludethat the scheme is in fact fourth-order accurate and consistent. For the accuracyand dissipation trials A1 = 0:5, A2 = 0, in Eq. (11), a 
at bottom and parameters� = 0:3, � = 0:1, !1 = 0:5, were used.4.3 Fixed-Point Method Performance and EvaluationSince an exact solution to the three-dimensional internal wave system is as yetunknown, we sought to discern the accuracy of the �xed-point method (FPM)using local analysis. Let � be the size in x or y of each grid element. A comparisonof the computed solution at a particular point, using �, with a solution with gridsize �=2 yields j�� � ��=2 j � k1 = CO0[(�=2)p]: (57)Halving the grid size againj��=2 � ��=4 j � k2 = CO[(�=4)p]: (58)
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Figure 3: Error as a function of grid size for the Runge-Kutta method. l1: � � � � � � � � �l2: ������ , l1: |||||.Thus, using Eq. (57) and Eq. (58) one can solve for p to get an estimate of theorder of accuracy of the scheme:p = log k1 � log k2log 2 : (59)Using the same parameters and boundary conditions as those used in connectionwith the Runge-Kutta scheme evaluation trials, and a domain with length of 128and span of 32, we found that FPM yields an average value of p = 1:8, with astandard deviation of 0:5. Values of both �eld quantities were used to estimate p,



25and they were taken from various points in the domain.A systematic study of the convergence of the method was not carried out.However, the computed values tended to converge as the grid size was re�ned.Since comparisons of the computed solutions with an exact expression for the three-dimensional case were not possible, a comparison of the cross-sectional values of ane�ectively two-dimensional solution computed using FPM along the whole lengthin x and midway in the spanwise direction y, with a solution computed usingthe Runge-Kutta method with a very �ne grid spacing was made to ascertain thequalitative correctness of the FPM scheme. A measure of the error is given by thenorms l1(�x;�y) = maxfPr j�(r�x;mid)� �0(xr) jgmaxfPr j�0(r�x) jgl1(�x;�y) = Pr j�(r�x;mid)� �0(xr) jPr j�0(r�x) jl2(�x;�y) = [Pr j�(r�x;mid)� �0(xr) jg2]1=2[Pr j�0(r�x) j2]1=2 ; (60)where � represents the solution obtained using FPM and �0 the solution computedwith the Runge-Kutta scheme.The result for the case �x = �y is shown in Figure 4. The same outcome isobtained when �y = 0:25 and �x is varied. On the other hand, when �x = 0:25is �xed and �y is varied, very little change in the norms is observed. In this lastcase, the norms had an approximate value of 4:4 � 10�3 for all grid sizes in the ydirection that were used. Note that there is no y dependence in the solution forthis particular trial.
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Figure 4: Error as a function of grid size, with �x = �y. l1:�� � � � ��, l1:� � � � � � � � �, l2:|||||.The rate at which the iteration procedure converges in FPM as a function of thegrid size was also investigated. With � = 0:3, � = 0:08, !1 = 0:5, and boundaryconditions A1 = 0:5 and A2 = 0:1, and a 
at bed, the iteration discrepancylog10[maxf nXs=0 j�l+1(x; s�y)� �l(x; s�y) jg] (61)was monitored at a particular value of x in a fairly large domain. As expected,it was found that the number of iterations required to meet a certain iterationtolerance decreased as the grid was re�ned. Figure 5 shows how the iteration



27discrepancy drops after each iteration l for a number of di�erent grid sizes. It isevident from the graph that a �nite and small number of iterations are required toreach adequate error tolerances using reasonably-sized grids.The iteration convergence of the solution at the �rst step in x was examined aswell. Recall that for the �rst step a backwards Euler scheme was used to discretizethe linear operator instead of the Douglas scheme. The �nding is that the numberof iterations was roughly double the number required elsewhere in the domain,where the Douglas scheme is used.
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Figure 5: Iteration discrepancy as a function of grid spacing. The number ofiterations drops as � = 4, 2, 1, 0:5 respectively.



284.4 Storage and Speed of the FPMAn estimate for the operation count for the FPM is as follows. Eq. (18) leads tothe problem L� = b (62)for the unknown �, where L is a 2n � 2n tridiagonal matrix, m times to cover allvalues of x in the domain. The e�cient way to solve Eq. (62) is to decompose theproblem in two steps: let L = WU , where W is a lower triangular matrix and Uand upper triangular matrix. Then Wg = b (63)is solved for g, followed by U� = g; (64)to �nally obtain �. The total operation count for the solution of Equations (63)and (64) is (5n� 4) multiplies and (3n� 3) adds. All told, O(16n) operations. Inturn, this process is performed l times to compute the (l+1)th iterate, and �nallym times to cover all values of x. The total is m� l �O(n).The storage requirements of the FPM may be estimated as follows: the old andthe new vector at each x, and another vector for the iteration process, need to bestored. Hence 6n values are stored. In addition, all the entries of a tridiagonalmatrix of size 2n � 2n, or roughly 6n values need to be stored. The total is thus12n, or O(n) values. In fact, we could be even more economical and use multipliersin the entries of L, so that only one half of the tri-diagonal matrix entries need to



29be stored.Note that its economy of resources hinges upon the simplicity of the matrixthat the discretization generated. If higher-order accuracy is required, the matrixwill be more complicated than the simple tridiagonal matrix that was used in thisstudy, requiring greater computational resources. A somewhat unavoidable prob-lem with the FPM is that the discretization has signi�cant dissipation. However,the dissipation can be made tolerable at the expense of greater computationalresources, that is, by re�ning the grid.To illustrate the degree of dissipation in the surface system FPM implementa-tion, we used the same parameters and domain that was used in connection with theiteration issue, and we �xed the iteration discrepancy tolerance at 10�6. Two typesof trials were carried out, both using a 
at bottom. In the three-dimensional trialwe assumed the boundary conditions were A1 = 0:5 + 0:01y and A2 = 0:1 + 0:01yand monitored the conserved Hamiltonian [5] along the length in the x direction,midway in the spanwise direction. In the two-dimensional trial, we set A1 = 0:5and A2 = 0:1 and monitored the same quantity along the ray. The outcome of bothtrials was qualitatively similar: the computed conserved quantity oscillated witha period equal to the interaction length. The di�erence between the peak valueand the minimum value increased as the grid size was made larger. In addition,dissipation (i.e., the drop of the peak value as a function of position x) increasedas the grid size was made larger, and as a result, the local interaction length grewsince the amplitude of the modes were attenuated. The attenuation we know isinherent in the discretization of the linear operator. The dissipation and oscillationof the conserved quantities can be made negligible by re�ning the grid. We also



30Grid Size � Fluctuation4.00 0.10022.00 0.06271.00 0.01680.50 0.00500.25 0.0014Table 1: Energy 
uctuation vs. grid size. Equilateral grid case.Grid Size �y Fluctuation4.00 0.00182.00 0.00131.00 0.00130.50 0.00120.25 0.0014Table 2: Energy 
uctuation vs. �y. �x = 0:25 �xed.found that the e�ect is much more pronounced when A2 = 0 exactly, which yieldssolutions with very sharp minimas in the �eld variables. Table 1 shows the di�er-ence between successive maxima and minima for the second trial as a function ofgrid size, with �x = �y. We also report the outcome of �xing �x = 0:25 andvarying �y, in Table 2, and the opposite settings are illustrated in Table 3. Thetwo-dimensional trials for �x = 0:25 and �y = 4 showed signi�cant discrepancieswhen compared with the Runge-Kutta calculation, and the energy for this caseoscillated in a somewhat regular pattern.



31Grid Size �x Fluctuation4.00 0.14152.00 0.06281.00 0.01980.50 0.00490.25 0.0014Table 3: Energy 
uctuation vs. �x. �y = 0:25 �xed.To conclude this section, we report the wall-clock times for three runs of theinternal wave equations, as discretized using FPM. The code was written in Fortran77|because of issues related to code portability{i-n a straightforward manner,except that recursion was used in the iteration procedure. For the size of theseruns, the use of recursion was probably marginally slower than having opted forrepeated subroutine calls. No machine optimization or 
oating-point acceleratorswere used.1 The time trials were carried out with an initial bottom con�gurationf = 0:01x. All other parameters and physical quantities were the same as thoseused previously. The domain was a square with 50 units to its side. Two times arereported, the �rst one, in Table 4, corresponds to the total time required to �ndthe �eld variables everywhere in the domain, and a second one, given in Table 5,is the time required to compute all values in the y direction, for a particular x.1The Titan's vectorizability was not exploited either. Otherwise, its reported performancewould not compare so unfavorably.



32Machine � = 1, (50 � 50) � = 0:5, (100 � 100) � = 0:25, (200 � 200)Sun Sparc SLC 7.43 25.42 78.8Sun Sparc 2 2.29 7.81 23.13Ardent Titan 2X P1 3.9 13.9 44.81Table 4: Wall-clock times in seconds vs. grid size (number of grid points perdomain) for the computation of the surface system over the whole domain usingthe �xed-point method
Machine � = 1, (50 � 50) � = 0:5, (100 � 100) � = 0:25, (200 � 200)Sun Sparc SLC 0.16 0.25 0.50Sun Sparc 2 0.06 0.08 0.15Ardent Titan 2X P1 0.08 0.13 0.29Table 5: Wall-clock times in seconds for the computation of the surface system forall values of y at a particular x using the �xed-point method



335 SummaryThe model for the formation and evolution of three-dimensional sand ridges onthe continental shelf described in [1] and [2] has been shown to be adequatelydiscretized using �nite di�erence techniques and �xed point methods. The masstransport equation is implemented by using a standard Lax-Wendro� scheme, whilethe surface system was discretized using a Douglas scheme for the linear part anditerative correction for the nonlinear terms. We call such a scheme the �xed-pointmethod (FPM).The schemes' performance was evaluated in detail. It was found that bothschemes are second-order accurate in time and space. They were also found tobe e�cient in both storage and speed and quite straightforward in their computerimplementation. The schemes were found to converge as the mesh size was dimin-ished.The Lax-Wendro� scheme was found to have signi�cant phase drift, especiallywhen the mesh size is increased. The FPM was shown to have signi�cant di�usionfor large grid spacings. This damping will introduce phase errors in the waves,especially if the domain is quite large.Included in this study is a prescription to monitor the stability of the solutions.This condition was monitored in all trial runs a posteriori. The condition poses asevere restriction on the size of the computed solutions, but it has been found tobe large enough to encompass most physically relevant situations.In order to not introduce unwanted symmetries in the solution of the wave sys-tem, a \zero 
ux condition" was introduced to handle the boundary conditions on



34the lateral sides of the domain. Brie
y described, the condition amounts to plac-ing Neumann boundary conditions on the lateral sides of the domain, su�cientlyfar away from the region of interest, connecting this domain to lateral swaths ofcomputational space in which the three-dimensionality of the solutions is graduallycollapsed into two dimensions. While the technique was not a resounding success,especially for domains that were very long in the x direction in which ample spacewas available for the solution in the region of interest to be a�ected by the hardlateral barriers, it was preferred over other alternatives that would complicate theproblem or pose severe symmetry conditions on the solutions.In summary, the solutions to the model may be con�dently found using thetechniques described in this paper. In order to reduce the phase error and dissi-pation in the computed solutions, the mesh size must be small. The size of thesolutions to the wave system must be monitored to insure stability. The regimeof stability of the mass transport equation discretization was found to be wellestimated by the well-known Courant-Friedrich-Lewy condition.
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36A AppendixThe following are constants associated with Eq. (1):K1 = F1K2 = F2K3 = D1E1K4 = D2E2K5 = D1S1K6 = D2S2 (65)with Dj = [2(1� �2!2j3 )]�1Ej = kj(1 � 23�2!2j )Fj = 1=2kjS1 = k2�k1!1 fk2 � k1 + !1(!1k1 + !2k2 )gS2 = 2(k21=+ 2!21)=!2: (66)
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